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Recent molecular dynamics simulation methods have enabled thermal conductivity of bulk materials to be
estimated. In these simulations, periodic boundary conditions are used to extend the system dimensions to the
thermodynamic limit. Such a strategy cannot be used for nanostructures with finite dimensions which are
typically much larger than it is possible to simulate directly. To bridge the length scales between the simulated
and the actual nanostructures, we perform large-scale molecular dynamics calculations of thermal conductivi-
ties at different system dimensions to examine a recently developed conductivity vs dimension scaling theory
for both film and wire configurations. We demonstrate that by an appropriate application of the scaling law,
reliable interpolations can be used to accurately predict thermal conductivity of films and wires as a function
of film thickness or wire radius at realistic length scales from molecular dynamics simulations. We apply this
method to predict thermal conductivities for GaN wurtzite nanostructures.
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I. INTRODUCTION

Thermal conducting properties of semiconductor nano-
structures �e.g., nanowires� has been actively explored in re-
cent years1–5 because they directly impact many important
applications including microelectronics and thermoelectrics.
In the microelectronics application, a continuous decrease in
feature sizes has resulted in a continuous increase in heat
generation. This trend has placed an increasingly demanding
requirement for the semiconductor materials to have a high
thermal conductivity to effectively dissipate the excessive
heat to the surrounding environment.1 In the thermoelectrics6

application, on the other hand, a low thermal conductivity is
desired because it results in an increase in the energy con-
version efficiency. At the nanometer length scale, the effec-
tive thermal conductivity becomes sensitive to feature di-
mensions and defect concentrations. While this provides an
effective means to tailor thermal conductivity for specific
applications, the scaling of thermal conductivity against fea-
ture dimension is not always clear. Because experimental
measurement of thermal conductivity is increasingly more
challenging as the feature size decreases, a theoretical under-
standing of thermal conductivity as a function dimension can
play a critical role towards optimizing many nanostructure
applications including microelectronics and thermoelectrics.

To study the dimension effects on thermal conducting
properties of nanostructures, previous works have used the
solution of Boltzmann partial differential equations.7–12 This
approach is complex, requiring certain assumptions to reach
simple analytical solutions. For example, the simple analyti-
cal equations for thermal conductivity provided in Refs. 7–9
are only applicable either in a small or a large dimension and
hence they cannot be used to extrapolate data obtained from
one dimension range to another. In addition, the Boltzmann
partial differential equations involve certain input param-
eters, such as surface specularity, which may not be always
available for a given material of interest.

When an accurate interatomic potential is available, the
use of molecular dynamics �MD� simulations in studying the

thermal transport properties of crystals13–31 may become de-
sired. This is because the computational system used in MD
simulations captures exactly the lattice nature of the crystal,
which enables effects of surfaces and defects to be accurately
incorporated. It has been shown that a reasonably accurate
determination of thermal conductivity requires a real time of
MD simulation for at least tens of nanoseconds.31 At this
time scale, the system size that can be effectively employed
usually contains no more than a million of atoms even with
massively parallelized MD simulations. For GaN, this trans-
lates to about 1.0�104 nm3 of material volume. However,
the GaN nanowires grown in experiments can have radius
exceeding 20 nm and length exceeding 20 �m.32 This cor-
responds approximately to a material volume exceeding 2.5
�107 nm3. As a result, significant length-scale difference
exists between the simulated and the real systems.

Even with rather small systems, MD simulations have
been relatively successfully applied to determine thermal
conductivities of bulk materials based upon either the Green-
Kubo �and its variations�13–19 or the “direct method.”20–31 In
the Green-Kubo method, periodic boundary conditions are
used in all the three coordinate directions. As was demon-
strated in previous work31 and will be reexamined in the
following, the use of periodic boundary conditions effec-
tively extends the dimension of a small computational sys-
tem to infinity. As a result, an infinitely large bulk crystal can
be well captured with the Green-Kubo method even when a
small simulated system is used. In the direct method, peri-
odic boundary conditions can also be applied in the two co-
ordinate directions perpendicular to the heat flux so that
these two directions can be viewed as infinity. However, the
direct method involves a heat source and heat sink along the
heat conducting direction. A finite spacing, L, must be im-
posed between the source and the sink. Fortunately, both
experiments and theories indicated that the inverse of ther-
mal conductivity 1 /� and the inverse of length scale 1 /L
satisfy accurately a linear scaling relationship,21–23,27,33,34
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where �b is the bulk thermal conductivity at L→� and � is
a dimension-independent coefficient. To obtain bulk thermal
conductivity, several simulations for different small cell
lengths are performed and the results can then be relatively
accurately extrapolated to the infinite-size limit due to the
linearity of the relationship.

Periodic boundary conditions cannot be used for finite
system dimensions. However, if a reliable linear scaling law
that is applicable from nanoscale up to macroscale is known,
the thermal conductivity of finite systems at realistic length
scales can still be accurately predicted based upon data ob-
tained from MD simulations on a nano scale. An underlying
assumption of Eq. �1� is that the two dimensions perpendicu-
lar to the heat flux are infinite. Because of this, Eq. �1� is
essentially a scaling law for two-dimensional �2D� films
where the heat flux is through the film thickness L. Unfortu-
nately, no similar scaling laws were previously available for
other heat flux directions �e.g., parallel to the film surface� or
other nanostructures �e.g., nanowire or nanoparticles�. As a
result, previous MD simulations had not been applied to cal-
culate thermal conductivities at realistic length scales for
many interesting nanostructures, including cases where heat
conduction occurs in the plane of a film or through the axis
of a wire.30,35

Recently, we developed a theoretical scaling law that de-
fines thermal conductivity of a nanostructure as a function of
all of its three independent dimensions: thickness t, width W,
and length L,36
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where �0,c, �1,c, �2,c, �0, �1, �2, and d are seven constants
that can in principle be determined from available thermal
conductivity vs dimension data. By performing very large
MD simulations at different system dimensions, we have
demonstrated that Eq. �2� is highly accurate from a nanoscale
all the way to macroscales.36 The development of such an
analytical scaling law has begun to enable MD simulations to
be used to predict thermal conductivity of nanostructures at
realistic length scales. The goal of the present work is three-
fold. First, we provide more detailed physics of the scaling
law by adapting it for general 2D film and one-dimensional
�1D� wire cases. Next, we explore the conditions and param-
eter space under which the scaling law can be accurately
applied and discuss the methods to predict thermal conduc-
tivity of nanostructures at realistic length scales. Finally, we
perform large-scale MD simulations to determine the �0001�
thermal conductivities of a wurtzite GaN crystal constructed

in two nanostructure configurations: �i� �11̄00� film with
varying film thickness and �ii� a �0001� hexagonal wire with

varying wire radius. GaN is chosen for the case study be-
cause it has excellent optoelectronic properties and can be
easily integrated with the existing silicon structures. In addi-
tion, some GaN applications, such as laser diodes and high-
electron mobility transistors,37–42 operate at high current and
power densities. Understanding thermal transport of GaN
nanostructures helps these applications.

II. SCALING LAW

The underlying assumption of our scaling law36 is accu-
rate when the dimension of the structure is larger than the
phonon mean-free path. For GaN bulk crystals, the phonon
mean-free path has been estimated to be approximately
500 Å at 300 K and 100 Å at 500 K from both experimental
data and kinetic theory.43 In nanostructures, the apparent
mean-free path is reduced due to surface scattering, causing
the thermal conductivity to reduce. Interestingly, for infinite
cross section, simple theoretical analysis indicated that the
inverse of the phonon mean-free path along the length direc-
tion is a linear function of inverse of the length.27 This sug-
gests that the inverse of the thermal conductivity is also a
linear function of the inverse of the length, matching exactly
the prediction of the scaling law, Eq. �2�. This means that the
scaling law can actually be applied even when the length
scale is comparable with the phonon mean-free path. We will
re-examine this in the following.

Our theory can be extended and applied to arbitrary heat
flux directions with respect to arbitrary shapes of the nano-
structure. Here we confine our discussion to film and wire
cases.

A. Film case

The geometry of the film case is illustrated in Fig. 1�a�
where heat is assumed to flow through a finite length L of a
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FIG. 1. Heat conduction through a finite length L of a box-
shaped film with a finite thickness t and an infinite width W→�.
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box-shaped sample with a finite thickness t and an infinite
width W→�. Note that for a true 2D film, L→�. A more
general scenario of finite L is assumed here so that the theory
can be applied with the direct method MD simulations where
a finite spacing between heat source and heat sink must be
used. It is recognized that the size effect on thermal conduc-
tivity origins from the surface scattering of phonons. Hence,
we separately consider surface and bulk regions of the
sample. As shown in Fig. 1�a�, the sample is divided along
the thickness direction into three smaller box-shaped regions
�referred to as plates hereafter�: the inner �core� plate has a
thickness of t−2d and is marked as “0” because it does not
bound any y surfaces, and the two outer �shell� plates have a
thickness d and are designated as “1” because they bound
one y surface. When the thickness t is very large, we can
always choose a sufficiently large shell thickness d so that
the thermal transport behavior of plate 0 is independent of
the presence of the top and the bottom free surfaces that are
far away. This means that the thermal conductivity of plate 0
is independent of t and therefore can be expressed as a func-
tion of L only: �0�L�. The local thermal conductivity inside
plate 1 is nonuniform near the surface. However, plate 1 still
exhibits an apparent overall thermal conductivity. Note that
at a large d, there is really no “distinguishable” interface
between plates 0 and 1 as the thermal transport properties
from both sides of the interface approach the same bulk
value. This means that once a large value of d is given, the
apparent thermal conductivity of plate 1 can also be ex-
pressed as a function of L only: �1�L�.

Using Fig. 1�a�, we assume that the left-hand side of the
sample is kept at a high temperature of Th and the right-hand
side at a low temperature of Tl. Because the vertical tempera-
ture gradient is zero at the “indistinguishable” interface be-
tween plates 0 and 1, we can list separately the thermal trans-
port equations for the two types of plates,

�0�L� =
J0

Th − Tl

L

, �3�

�1�L� =
J1

Th − Tl

L

, �4�

where J0 and J1 are, respectively, the heat fluxes through
plate 0 and plate 1. Note that because of an assumed zero
vertical temperature gradient at the 0/1 interface, the high
and low temperatures are the same for both types of plates.
The overall thermal conductivity of the system is expressed
as

� =
J

Th − Tl

L

, �5�

where the total flux J can be calculated as an area-weighted
average

J =
W · �t − 2d� · J0 + 2W · d · J1

W · t
=

�t − 2d� · J0 + 2d · J1

t

�6�

as in parallel conductors. Substituting Eqs. �3�, �4�, and �6�
into Eq. �5�, we have

��t,L� = �0�L� − ��0�L� − �1�L�� ·
2d

t
. �7�

Now we consider the thermal transport through the ith
plate �i=0,1�. Imagine that the plate is divided along the
length direction into three sections: the center section con-
tains a length of L−2	 and is marked as “c,” and the two end
sections contain a length of 	 and are marked as “e,” as
shown in Fig. 1�b�. Just as a subsurface thickness d sub-
sumes the scattering of the side surfaces, a subsurface length
	 subsumes the scattering of the end surfaces �including the
artificial effects of the thermostats�. Here we distinguish d
and 	 for generality. It can be seen that for a given large
value of 	, which is always possible when L is sufficiently
large, the thermal transport behavior of the center section is
independent of the presence of the two end surfaces that are
far away. This means that the apparent thermal conductivity
of the center section is equal to a constant �i,c �i=0,1�. In
particular, �0,c corresponds to the bulk thermal conductivity
�b by definition. Similar to the discussion in the above, the
apparent thermal conductivity exhibited by the two end sec-
tions is also independent of L and therefore is equal to an-
other constant �i,e. Because heat flows through the three sec-
tions of the plate in serial, the heat flux J is a constant. We
can list the temperature difference between the left and right
ends as

Th − Tl =
J

�i,c
· �L − 2	� +

J

�i,e
· �2	� . �8�

The inverse of the overall thermal conductivity of the plate,
�i

−1�L�, equals J−1 · �Th−Tl� /L. We can therefore write

1

�i�L�
=

1

�i,c
+

2	

L
· � 1

�i,e
−

1

�i,c
� . �9�

Equation �9� can be rewritten as

�i�L� =
L · �i,c

L + �i
, �10�

where

�i = 2	 ·
�i,c − �i,e

�i,e
. �11�

�i combines the relative change in thermal conductivities be-
tween the center and the end sections with the length 	, it
therefore reduces one parameter. This reduction in param-
eters is expected because 	 and �i,e are dependent. It can be
seen from Eq. �11� that �i can be viewed as a characteristic
length measuring the scattering of the end surfaces. Substi-
tuting Eq. �10� into Eq. �7�, we have a scaling law for the
thin film,
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Equation �12� is consistent with the previous work.31,36

For instance, it reduces to Eq. �1� when t→� and it matches
Eq. �2� when W→�. Equation �12� involves five parameters
�0,c, �1,c, �0, �1, and d. These five parameters have physical
meanings and must be subject to some physical constraints.
First, the surface thickness d and the associated surface ther-
mal conductivity �1,c are dependent parameters. Hence, d
can be selected and only the corresponding �1,c value be
treated as an unknown parameter. However, d is not com-
pletely arbitrary as it must be large enough to subsume the
surface scattering effect. Once d is large enough, Eq. �12�
can always predict accurate results regardless of its particular
value for any film thickness t that satisfies the geometry con-
dition t
2d. On the other hand, a large d prevents Eq. �12�
from being used for small thickness t due to the constraint
t
2d. So it is important to understand the low bound of d.
Clearly d is sufficiently big if it equals the phonon mean-free
path in the bulk crystal. As described above, this might be
overly stringent.

Once d is chosen, the remaining parameters can be fitted
to the available data. For MD applications, it is necessary to
perform several simulations at different dimensions in order
to fit Eq. �12�. Note that if the minimum system thickness
used in these simulations is tmin, then the largest d that still
enables all the MD data to satisfy the geometry condition is
tmin /2. In order to find a small d to enable study of small
structures, a trial-and-error approach can be used. For in-
stance, d can be first set to tmin /2 and Eq. �12� fitted to all
MD data. If satisfactory fitting is obtained as will be de-
scribed below, then the selected d is good. Otherwise d can
be set according to the next thinnest sample and the thinnest
�tmin� sample is disqualified from the fitting. This process is
continued until an appropriate d is found. There are also
some useful relations. Because the end section is assumed to
have more surface scattering than the center section, and
plate 1 has surface scattering that is assumed to be insignifi-
cant in plate 0, we always have �i
0�i=0,1�, �1,c��0,c,
and �1�L���0�L� �for any L�. These conditions are auto-
matically satisfied during fitting provided that the data to be
fit are accurate and d satisfies the geometry constraint.

Equation �12� can be used for infinite 2D films. When t
→�, the problem is essentially the heat conduction through
the length L of a film �L is in fact the “thickness” in this
case�. When L→�, Eq. �12� gives thermal conductivity in
the plane of a film as a function of the film thickness t. In
addition, Eq. �12� can also be used for quasi-2D cases or
even 1D cases, e.g., out-of-plane conduction to explore the
dimensional effects by using different t /L ratios.

B. Wire case

The wire case is illustrated in Fig. 2 where heat is as-
sumed to flow through the length L of a circular sample with
a finite radius r. Using the same theory described above, the
sample is divided along radius direction into an inner,
smaller cylindrical core with a radius of r−d and an outer

cylindrical shell with a thickness of d. The core does not
bound any free surfaces whereas the shell terminates with a
radial surface and hence the core and shell are denoted as 0
and 1 respectively. It can be seen that when r is very large,
we can always choose a sufficiently large d to subsume the
surface scattering effect so that the thermal conductivities of
the core and the shell are independent of the wire radius and
hence can be expressed as functions of L using �0�L� and
�1�L�, respectively. In Fig. 2, we again assume that the
sample is held at a high temperature of Th at the left and a
low temperature of Tl at the right. The thermal transport
equations for the core, shell, and overall system can be rep-
resented by Eqs. �3�–�5�. The total flux J, however, is modi-
fied as

J =
J0 · � · �r − d�2 + J1 · �� · r2 − � · �r − d�2�

� · r2

=
J0 · �r − d�2 + J1 · d�2r − d�

r2 . �13�

Substituting Eqs. �3�, �4�, and �13� into Eq. �5�, we have

��r,L� = �0�L� − ��0�L� − �1�L�� · �2d

r
−

d2

r2 � , �14�

where �0�L� and �1�L� can be described by Eq. �10�. Substi-
tuting Eq. �10� into Eq. �14�, we have a scaling law for the
wire,

��r,L� =
L · �0,c

L + �0
− �L · �0,c

L + �0
−

L · �1,c

L + �1
� · �2d

r
−

d2

r2 � .

�15�

Equation �15� is also consistent with the previous
work31,36 as it reduces to Eq. �1� when r→� and it matches
Eq. �2� using the geometry conditions of a circular wire:36

t=W=2r, �2,c=�1,c, and �2=�1. Equation �15� involves the
same five parameters as in the film case. The geometry of the
wire case, however, requires that d�r. For MD applications,
the maximum d enabling all MD data to be fit equals the
minimum radius rmin used in the series of MD simulations.
With d determined similarly as in the film case, the remain-
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FIG. 2. Heat conduction through a finite length L of a circular
wire with a finite radius r.
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ing four parameters can be fitted to the measurements. If
done correctly, the parameters should satisfy �i
0�i=0,1�,
�1,c��0,c, and �1�L���0�L� �for any L�.

Equation �15� can have numerous uses. When L→�, Eq.
�15� represents thermal conductivity through an infinite 1D
wire as a function of wire radius. In particular, Eq. �15� in-
dicates that thermal conductivity of wires is a linear function
of 2d /r−d2 /r2. When r is large, the thermal conductivity
increases to a first order with 	−1 /r, in agreement with the
approximate equation derived by Lu et al.8,9 from the Bolt-
zmann equation. Equation �15� can also be used in other
cases. For instance, at r→�, the problem reduces to heat
conduction through the thickness L of an infinite 2D film. It
can be used for quasi-2D films or even 3D particles to ex-
plore the dimension effects by using different r /L ratios.

III. MOLECULAR DYNAMICS METHODS

One ultimate goal of our work is to enable MD simula-
tions to predict thermal conductivities of GaN films and
wires at realistic, device length scales on the order of
100–1000 Å or more, which is not at bulk limit but too long
to directly simulate with MD. Here we describe details of the
interatomic potential used in the MD, the computational cells
for film and wire configurations, and the thermal transport
simulation method.

A. Interatomic potential

The previous work31,36 applied the Stillinger-Weber �SW�
potential parameterized by Béré and Serra44,45 to calculate
the thermal conductivity of GaN bulk crystals. To compare
with the previous results, we also use the same potential in
the present study. This potential gives reasonable prediction
on dispersion relations, vibrational density of states, and heat
capacity for bulk systems.31

B. Computational system for films

The computational system used for the film simulations is
shown in Fig. 3, where the color scheme shows the tempera-

ture �red means the highest temperature and blue means the
lowest temperature�. Similar to Fig. 1, we assume that the
sample has a finite thickness t in the y direction and an
infinite width W→� in the z direction. Following the cus-
tomary approach with the direct method MD
simulations,20–31 a periodic boundary condition was used in
the x direction. As will be shown below, this means that the
system dimension in the x direction is 2L rather than L.

The equilibrium GaN has a wurtzite hexagonal crystal
structure. The hexagonal crystal has three orthogonal direc-

tions �0001�, �1̄100�, and �112̄0�. To study thermal conduc-

tion along the �0001� direction of a low-energy �1̄100� film,
the computational supercell is aligned so that the x, y, and z

coordinates correspond, respectively, to �0001�, �1̄100�, and

�112̄0� directions. The experimental lattice constants of the
hexagonal wurtzite are a=3.19 Å, c=5.19 Å, and internal
displacement between Ga and N sublattices u=0.377.46 With
the SW interatomic potential used here, the zero-temperature
lattice constants are a=3.19 Å, c=5.20 Å, and u=0.375.
Converting the hexagonal crystal to the smallest orthogonal
unit cell, the lattice constants of the unit cell are respectively
a1=c=5.2000 Å, a2=2 ·a cos�� /6�=5.5252 Å, and a3=a
=3.1900 Å in the x, y, and z directions. For convenience, the
system dimension can be represented by the number of cells
n1, n2, and n3 in the x, y, and z directions. In addition to the
difference in unit, n1, n2, and n3 always refer to the simulated
size whereas t, W, and L refer to the real size that can be-
come infinite. Two series of sample dimensions, one corre-
sponding to n1=100 and the other one corresponding to n1
=150, were studied at various n2 ranging from 50 to 150 and
in addition at t→� using a fixed n3=5. The film scenario

with the �1̄100� film surfaces was simulated using a free
boundary condition in the y direction with surfaces termi-
nated between the larger spacing as will be described in de-
tails in the wire case. Such a termination ensures stable sur-
faces and therefore no surface reconstruction was observed
in simulations as supported by the experiment.47 The t→�
or W→� case was simulated by using a periodic boundary
condition in the corresponding direction. Note that although
the periodic boundary condition is also used in the x direc-
tion, the meaningful dimension in the x direction for the
direct method MD simulations is the spacing between heat
source and heat sink. This spacing is not extended by the
periodic boundary condition and is always finite.

C. Computational system for wires

Unlike the circular wire assumed in Fig. 2, the GaN wires
observed in experiments are often hexagonal with 
0001�
axis and �1̄100 facets. The computational system used for
simulations of such wires is shown in Fig. 4�a�. The crystal
orientations are the same as those used for the film simula-

tions, except that atoms beyond specified �1̄100 surfaces are
removed. As in Fig. 2, the system is assumed to have a finite
radius r, which is defined as the minimum distance between
the center of the wire and the surface, Fig. 4�b�. Again the
system dimension in the x direction is assumed to be 2L
rather than L to facilitate the periodic boundary condition.

2L = 520 and 780 Å (periodic)

W ( )→∞

remove J (eV/ps·Å2)
add J (eV/ps·Å2) y [1100]

z [1120]

x [0001]

temperature profiletemperature profiletemperature profile

t=
27
5
-8
30
Å
an
d
∞

L L

FIG. 3. �Color online� Atomistic configuration for film MD
simulations.
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The cross section of the hexagonal wire is examined in

details in Fig. 4�b�. It can be seen that the �1̄100 atomic
planes have two different spacings. We found that if the sur-
face is terminated between the small spacing, such as that
shown by the dashed line, then the surface is composed of
many dangling bonds resulting in high energy and unstable
configurations. Hence, the surfaces of our wires are always
terminated between the large spacing. It can also be seen that

the smallest repeatable spacing of the �1̄100 planes is ar
=a cos�� /6�=2.7616 Å. For convenience, the system di-
mension in the x and the radial directions can be, respec-
tively, represented by number of cells n1 and nr �in unit of
ar�. A matrix of dimensions with the longitudinal dimension
n1 ranging from 100 to 300 and the radial dimension nr rang-
ing from 4 to 12 was explored. Here free boundary condi-
tions were used in the y and z directions and the periodic
boundary condition used in the x direction.

D. Heat transport simulation algorithm

The thermal transport MD simulations were performed
under a constant number of atoms, constant system volume,
and constant system energy condition using a time step size
of t=1 fs. To accurately account for the effect of thermal
expansion and eliminate the errors due to statistical fluctua-
tion of the simulated temperature, the following steps were
used to create the initial crystal. First, a crystal was created
by assigning atom positions according to the prescribed crys-
tal lattice and the known lattice constants at zero tempera-

ture. A molecular dynamics simulation in the constant atom
number, �zero� pressure, and temperature �NPT� ensemble
was subsequently performed for a total of 20 ps period. The
desired simulated temperature was achieved using the veloc-
ity rescaling method. After discarding the first 10 ps simula-
tion to allow the system to reach a steady state, the average
crystal sizes and average total �kinetic and potential� system
energy were then calculated for the remaining 10 ps. We then
created another crystal using the average sizes obtained at
the finite temperature. We can also calculate the potential
energy of this newly created crystal by simply performing an
energy calculation simulation. The difference between the
average total system energy obtained from the NPT run and
the potential energy of this crystal prescribes exactly the
amount of the kinetic energy that needs to be added in order
for this crystal to exhibit the same total average energy over
the subsequent long constant energy thermal transport simu-
lation. We added precisely this amount of kinetic energy into
the system by first assigning velocities to atoms according to
Boltzmann distribution and then rescaling the velocities un-
der the zero total linear momentum condition.26,48,49 The
thermal transport simulation is started immediately without
the conventional long NPT or NVT simulation to establish
the initial temperature. The advantage of this approach is that
once steady state is reached, the average temperature of the
system matches exactly the desired temperature. In practice,
we found that the difference between the average tempera-
ture in the middle of the heat source and heat sink �where the
thermal conductivity was calculated� and the desired tem-
perature is well below 1 K �often near 0.01 K or less�. This
method has the same accuracy level as the “doubling tem-
perature” method applied previously.31 It is more general be-
cause the initial crystal is not required to be in the minimum
potential-energy configuration, which may not be easily de-
termined when the system includes surfaces.

The direct method requires the creation of a heat source
and a heat sink. As shown in Fig. 3, the heat source corre-
sponds to the red region at the far left of the cell and the heat
sink is the blue region near the middle of the cell. During
simulations, the size and location of the source and sink re-
gions are specified. With appropriate choices of system
length, source and sink region width, and locations of differ-
ent regions, we ensured that the source and sink regions were
geometrically identical and that the left side of the sink �or
source� region was exactly symmetric to its right side, up to
another source �or sink� region �which may be its periodic
image�. Here the width of the source or sink region is around
40 Å. It can be seen from Fig. 3 that the heat source at the
left side has an image at the right side under the periodic
boundary condition in the x direction. Consequently, even
the length of our system is 2L, the spacing between the
source and the sink is still L as shown in Fig. 1.

The constant flux25–29,48 method was used to create the
temperature gradient. In this method, a constant amount of
energy is added to the hot region and exactly the same
amount of energy is removed from the cold region at each
MD time step using velocity rescaling �while preserving lin-
ear momentum�. To ensure that the high and the low tem-
peratures are reasonable and consistent in different runs, the
heat flux has been adjusted within 0.00035 to
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FIG. 4. Atomistic configuration for wire MD simulations �black
and white colors distinguish Ga and N atoms, and the star shows the
center of the wire cross section�.
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0.0010 eV / �ps Å2� to give a consistent high-low tempera-
ture difference �say 5–10 K�. To generate extremely accurate
results, the first 0.4 ns simulation was discarded to allow the
system to reach a steady state and the remaining duration of
simulations was chosen to be at least 11 ns and many reached
over 20 ns. To compute the temperature profile, the system
dimension in the x direction is divided into a grid. The tem-
perature of each of the grid cells was averaged over the re-
maining time of simulations. The temperature profile and the
input heat flux were used to calculate the thermal conductiv-
ity using Fourier’s Law, Eq. �5�. To estimate the statistical
error of the calculated thermal conductivity, the total averag-
ing time was divided into 20 subsections and thermal resis-
tivity �or conductivity� was calculated for each of the sub-
sections. From these data, analysis of statistical error was
performed. For more details on the procedure please see Ref.
31.

It should be noted that under the periodic boundary con-
dition in the x direction, the observed dependence of thermal
conductivity upon the system length L comes primarily from
the scattering of the interfaces at the hot and the cold regions.
The functional dependence on L can still be well described
by Eqs. �12� and �15�, albeit �i should be viewed as an in-
terface scattering parameter rather than surface scattering pa-
rameter. Because our analysis extrapolates the MD data to an
L→� limit �i.e., true film and true wire�, the interface ap-
proximation will not affect the results.

IV. RESULTS

A. Film thermal conductivity as a function of film thickness

Systematic MD simulations were performed to derive
thermal conductivity of film as a function of film thickness at
two temperatures of T=300 and 500 K. As the Debye tem-
perature was estimated to be in the range 350–600 K,43,50,51

the system is expected to behave classically especially at 500
K. Although 300 K is at the lower bound of the estimated
Debye-temperature range, it is chosen for study because the
low-temperature data has less thermal fluctuation and there-
fore can provide stronger model validation. At each tempera-
ture, two series of MD simulations corresponding, respec-
tively, to 2L�520 Å�n1=100� and 2L�780 Å�n1=150�
were performed at different thickness t but fixed width W
→� as described in the above. Previous MD simulations
have determined the thermal conductivities at various length
L but a fixed thickness t→� and a fixed width W→�.31

Both present and previous data are collectively used to fit Eq.
�12� using a chosen value of d and the results of the fitted
parameters are shown in Table I. Both the MD data and the
fitted curves are shown in Figs. 5 and 6 for the 300 and 500
K temperatures, respectively. Equation �12� indicates that at
a fixed L, thermal conductivity � is a linear function of 1 / t,
and at a fixed t, the inverse of thermal conductivity 1 /� is
approximately a linear function of 1 /L. Hence, Figs. 5�a� and
6�a� show the � vs 1 / t plots at fixed L whereas Figs. 5�b� and
6�b� show the 1 /� vs 1 /L plots at fixed t. It can be seen that

TABLE I. Parameters describing the general scaling law.

Structure
T

�K�
d

�Å�
�0,c

�W /K m�
�1,c

�W /K m�
�0

�Å�
�1

�Å�

Film 300 138.13 178.38 151.65 1288.10 1329.65

Film 500 138.13 75.42 56.16 623.38 471.74

Wire 500 11.05 75.42 47.30 615.51 1324.45

Wire 500 22.09 75.42 50.30 604.71 795.87
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FIG. 5. Thermal-conductivity data obtained for film at 300 K.
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the linear relationships predicted by Eq. �12� is strikingly
reproduced by the MD data, and the agreement between the
fitted lines and the MD data is excellent using a single set of
parameters �d, �0,c, �1,c, �0, and �1� for both the thickness
and the length functions.

In Figs. 5 and 6, the shaded area indicate the length-scale
no-man’s land, meaning that the system dimension is too
large to be directly simulated using the MD methods. Figures
5�b� and 6�b� show that the linear scaling law can be used to
predict thermal conductivity in the shaded region through
extrapolation based upon the MD data obtained in a small
dimension range. Although the linear extrapolation is ex-
pected to produce reliable results, the accuracy of the ex-
trapolated values is difficult to confirm directly. In sharp con-
trast, Figs. 5�a� and 6�a� show that because the thermal
conductivity at an infinite thickness t can be obtained in the
MD simulation by using periodic boundary condition and
because the linear relationship extends to this value at t
→�, an extremely reliable interpolation can be used to pre-
dict thermal conductivity at any thickness dimension. Now
we can see that the satisfaction of the linear relationships by
the MD data and the extrapolation of the linear relation to the

bulk limit can be used to determine if the selected d value is
sufficiently large.

For true films, we set L→�. Using the parameters listed
in Table I and Eq. �12�, thermal conductivity of film was
calculated as a function of film thickness, and the results
obtained at 300 and 500 K temperatures are shown, respec-
tively, in Figs. 7�a� and 7�b�.

To confirm our hypothesis that the boundary scattering
region is confined to the surface, we calculated the heat flux
of a thin film in slabs parallel the surface of the film. The
calculated relative flux and temperature profiles are shown in
Fig. 8. Clearly it can be seen that flux remains nearly con-
stant in the interior but is degraded near surfaces. Tempera-
ture, on the other hand, is constant across the entire thickness
of the sample. This strongly validates that the conductivity in
the interior is a constant whereas it is reduced at surfaces.
This phenomenon is unknown in the past. It indicates that
although the thermal conductivity at small scale can be
thought to depend on the phonon mean-free path, it can still
be manifested through the core-shell phenomenon as as-
sumed in our model. This accounts for why our scaling law
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agrees well with the effects deduced from considering only
the phonon mean-free path.27

B. Wire thermal conductivity as a function of wire radius

Having verified the film case at both 300 and 500 K, MD
simulations were performed to study thermal transport for
wires at 500 K. Only one temperature is studied due to the
expense of the wire calculations. 500 K was chosen because
it is likely to be above the Debye temperature. To deduce all
the parameters, simulations were carried out using a matrix
of three sample length of 2L�520 Å�n1=100�, 1040 Å�n1
=200�, and 1560 Å�n1=300� and four sample radius of
r�11 Å�nr=4�, 16 Å�nr=6�, 22 Å�nr=8�, and 33 Å�nr
=12�. Equation �15� indicates that at a given length L, � is a
linear function of 2d /r− �d /r�2 and at a given radius r, 1 /� is
approximately a linear function of 1 /L. Here we explore two
different chosen d values, d=11.05 Å and d=22.09 Å. Us-
ing d=11.05 Å �which is the largest d that enables all MD
data to satisfy the geometry condition of the scaling model�,
� vs 2d /r− �d /r�2 curves at different L are shown in Fig. 9�a�
and 1 /� vs 1 /L curves at different r are shown in Fig. 9�b�.

In addition, the � values obtained at infinite cross-section
dimension �i.e., r→�� obtained in the previous work31 are
included in Fig. 9. In Fig. 9, the lines are calculated using
Eq. �15� with fitted parameters displayed in Table I. It can be
seen that Fig. 9 exhibits some linear relationships predicted
by Eq. �15�. However, the overall match between the MD
data and the model prediction is not great. Most seriously,
Fig. 9�a� indicates that a linear regression using merely the
data points at large 2d /r− �d /r�2 values would not closely
extrapolate to the data point at 2d /r− �d /r�2=0 �i.e., r→��
and Fig. 9�b� shows significant deviation of the predicted
curves from the data points.

The problems exhibited by Fig. 9 is inherently related to
an important condition: the parameter d must be chosen to be
sufficiently large to subsume the surface scattering effect in
order for Eq. �15� to be valid. To explore this further, we
increased d to 22.09 Å. This disqualified the data obtained at
small radii of r�11 Å and r�16 Å. The remaining data
were fitted to Eq. �15� and the parameters thus obtained are
included in Table I. With the increased value of d, the results
similar to those in Figs. 9�a� and 9�b� are recalculated and are
presented in Figs. 10�a� and 10�b�, respectively �note that the
scales in the horizontal axis are different between Figs. 9 and
10 due to the use of different d values�. Clearly, a significant
improvement is achieved. In particular, Fig. 10�a� indicates
that the data points obtained at large 2d /r− �d /r�2 values can
be linearly connected to accurately extrapolate to the point at
2d /r− �d /r�2=0 and Fig. 10�b� shows an improved agree-
ment between data points and the predicted curves.

The value of d used in the wire case is constrained by the
radius r used in the MD simulations. Unlike the film case
where the thickness t is independent of the width W, increas-
ing the radius in the wire case would increase the system
dimensions in both y and z directions. As a result, the mag-
nitude of the radius is more severely constrained by the com-
putational expense. In general, current computer resources
may not permit the use of radius significantly above nr=12.
The d value permitted by this radius is still small and signifi-
cant further improvement over the one seen in Fig. 10 is
likely to be achieved if d can be substantially larger. To im-
prove the results, we explored an alternative method by
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again using the scaling theory. Film simulations described in
the previous section resulted in the determination of five pa-
rameters �0,c, �1,c, �0, �1, and d. These five parameters have
physical meanings and are invariant in the wire configura-
tions. As a result, we can directly use these parameters and
Eq. �15� to calculate wire thermal conductivity. Note that due
to the relatively low computation cost, the d value used in
the film case reaches 138 Å, Table I. As a result, signifi-
cantly more accurate results can be expected. Some results of
this calculations at a few different radii r�d=138.13 Å are
included in Fig. 10�b� using stars. It can be seen that al-
though the predicted results from film simulations using big
d=138 Å and wire simulations using small d=22.09 Å are
different, the difference is relatively small at least for GaN.
Note that while the film parameters based upon a big d
=138 Å give better results, they cannot be used to calculate
thermal conductivity at r�d=138 Å.

For true wires, we set L→�. The film parameters and Eq.
�15� were used to predict wire thermal conductivity as a
function of radius. The results are shown in Fig. 11.

V. DISCUSSION

A. Generalized scaling law

The scaling law described in the above can be generalized
to any prismatic wire with arbitrary cross section. Approxi-
mated as coarse-grained resistance network with temperature
being a function of x coordinate only, the cross section of
such a wire can be broken up into a finite number of distinct
areas Ai, with one area A0 completely in the interior of the
wire and all the others i
0 touching the boundary of the

wire. The total cross-sectional area is then A=�iAi. The total
flux J is partitioned such that

AJ = �
i

JiAi = �
i

�i,j
Tj

xj
Ai, �16�

where the second equality is obtained from Fourier’s law and
�i,j is the conductivity of the ith area and the jth section.
Here we use j=−1 and 1 to indicate the two end sections and
j=0 to indicate the middle section. It is assumed that the two
end sections are similar so that �i,−1=�i,1=�i,�1 and T−1
=T1=T�1. Under the geometry conditions that x−1
=x1=d and x−1+x0+x1=L, we have

AJ = �
i

�i,�1
T�1

d
Ai = �

i

�i,0
T0

L − 2d
Ai. �17�

Using the continuous temperature field condition T
=2T�1+T0, Eq. �17� can be written as

AJ� 2d

�
i

�i,�1Ai

+
L − 2d

�
i

�i,0Ai� = T . �18�

The constituent areas can be classified into three types: cor-
ners, boundaries, and the interior. Each relates to the overall
radius R of the wire. In a self-similar fashion, the interior
scales with R2; the boundaries scale with R; and the corners
are essentially constant. Using geometry-specific constants
Ci, the areas of different types can be expressed as Ai /A
=Ci /R2 for the corners, Ai /A=Ci /R for the boundaries, and
A0 /A=1−�i
0Ai /A for the interior. The overall thermal con-
ductivity of the wire is then

� =
JL

T
=� 2d/L

�0,�1�1 − 1/R�
i�B

Ci − 1/R2�
i�V

Ci� + 1/R�
i�B

�i,�1Ci + 1/R2�
i�V

�i,�1Ci

+
1 − 2d/L

�0,0�1 − 1/R�
i�B

Ci − 1/R2�
i�V

Ci� + 1/R�
i�B

�i,0Ci + 1/R2�
i�V

�i,0Ci�−1

, �19�

where B and V represent the sets of boundaries and corners,
respectively, L and R are input sample dimensions, and the
rest of the parameters, i.e., d, Ci, and �i,j, need to be fitted. It
can be seen that Eq. �19� correctly reduces to the bulk ther-
mal conductivity value �0,0 as L→� and R→�. Practical
nanowires usually have symmetric cross section, thus it is
possible to reduce the number of independent parameters.
For an equilateral triangular prismatic wire, for example, the
free parameters would include �0,�1 and �0,0 for the core,
�1,�1 and �1,0 for the boundaries, and �2,�1 and �2,0 for the
vertices in addition to d, C1, and C2. Equation �19� then
becomes

� = � 2d/L
�0,�1�1 − C1/R − C2/R2� + C1 · �1,�1/R + C2 · �2,�1/R2

+
2d/L

�0,0�1 − C1/R − C2/R2� + C1 · �1,0/R + C2 · �2,0/R2�−1

.

�20�

B. Effect of periodic boundary conditions

The use of periodic boundary condition eliminates sur-
faces. Strictly speaking, however, there is still an interface
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between the periodic image that is not exactly the same as if
there were no such an image. The effect of this interface has
been explored previously by using the periodic boundary
conditions in the two cross-section directions with different
simulated cross-section areas.31 The results showed that the
periodic interfaces parallel to the heat flow have no signifi-
cant effect on thermal conductivity.31 As a result, periodic
boundary condition was thought to be able to extend the
system dimension to infinite. The past study, however, only
examined the simulated cross-section area between 180 and
890 Å2. In the present work, the cross-section area reached
as high as about 13 250 Å2. Hence, we re-examine the effect
of cross-section area under periodic boundary conditions.
Thermal conductivities were calculated at 300 K using
periodic boundary conditions in both y and z directions
with fixed simulated dimension of n1=150�2L�780 Å�,
n3=5��16 Å�, and various thickness of n2 between 3
��16 Å� and 150 ��830 Å�. The results are shown in
Fig. 12. Figure 12 confirms that when the periodic boundary
condition is used to extend the cross-section dimension to
infinity, the magnitude of the simulated dimension does not

affect the thermal conductivity in a wide range of cross sec-
tion between 260 and 13 220 Å2. Furthermore, since we
only varied the thickness t, our result provides a strong evi-
dence that the aspect ratio t /W also does not affect the ther-
mal conductivity under the periodic boundary condition.

C. Effect of surface stress

The simulations described above are based on a Stillinger-
Weber potential. An essential feature of SW potential is that
its pairwise functions decay to negligible values within the
second-nearest-neighbor distance of atoms. A problem with
the nearest-neighbor potentials is that they predict zero sur-
face stresses.52 The neglect of surface stresses may alter the
thermal conductivities of nanostructures. We have also ex-
plored the use of alternative potentials such as the Tersoff
GaN potential53 in our studies. Unfortunately, we discovered
that the Tersoff potential severely underestimates the thermal
conductivity as compared with the experimental measure-
ment. With the SW potential clearly the better choice for the
thermal transport simulations, we carefully assess the surface
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stress effect. This was done by modifying the SW potential
to artificially create a surface stress. All the pairwise func-
tions used in the SW potential are expressed in terms of the
scaled atomic spacing as F�R /��,44,45 where R is the atomic
spacing and � is a scaling factor. As a result, we scaled the
parameter � by 0.98 to reduce the equilibrium bond length
by 2%. We then used the modified potential for the two
atomic layers of atoms on the nanostructure surfaces and the
unmodified potential for the remaining atoms. This effec-
tively created a surface tensile stress. This is a good approxi-
mation because it realistically captures the surface stress in
the subsurface region despite the variation in atomic interac-
tion of the surface atoms. This modified scheme of inter-
atomic potential was then used to perform a selected case of
film simulation at a temperature of 500 K, a sample length
n1=150�2L�780 Å�, a width n3=5�16 Å�, and a thickness
n2=100��550 Å�. To understand the surface stress of the
sample, the system was first relaxed using molecular statics
energy minimization simulation at a constant volume deter-
mined from an NPT MD simulation at 300 K. The hydro-
static stress was calculated using the Virial theorem54

and was binned along the thickness direction. The surface
stress was calculated as the difference in hydrostatic stress
between surface and bulk. This calculated surface stress is
plotted as a function of position along the thickness in
Fig. 13 for both modified and unmodified SW potentials. It
can be seen that the modified potential clearly shows a sig-
nificant surface stress compared with the unmodified poten-
tial. Thermal conductivities were calculated and we found
27.56�0.36 W /K m for the modified potential as compared
with 27.70�0.43 W /K m for the unmodified potential.

Based on the data, we do not expect that neglecting the sur-
face stress by the SW potential significantly affects the ther-
mal conductivity estimates.

VI. CONCLUSIONS

We have explored general scaling equations that explicitly
express thermal conductivity of film and wire as functions of
dimensions. Based on these scaling equations, we have dem-
onstrated methods that enable molecular dynamics simula-
tions to be used to predict thermal conductivity of nanostruc-
tures at realistic length scales. We have performed extensive
MD calculations of thermal conducting properties along the
�0001� direction of GaN films and wires. The following con-
clusions have been obtained.

The linear relationships predicted from the scaling equa-
tions hold extremely well for MD data at a large parameter d.
Reliable prediction of film thermal conductivity as a function
of film thickness has been achieved using linear interpola-
tion.

Thermal flux in nanostructures exhibit a clear difference
between the surface and core whereas temperature is nearly
constant across the cross section, thereby verifying the core-
shell assumption of the scaling theory and the near-zero heat
flux perpendicular to the axis connecting hot and cold reser-
voirs.

Due to the limitation of computational cost, parameters
deduced from direct MD simulations of wires may not suf-
ficiently accurately predict the wire thermal conductivity at
large wire radii. However, the parameters deduced from film
simulations enable the derivation of a reliable expression of
wire thermal conductivity as a function of wire radius.

The simulated dimension does not affect the thermal con-
ductivity when the dimension is transverse to the heat flow
and a periodic boundary condition is used in that direction.
Hence, the periodic boundary conditions can be used to ac-
curately extend the system dimension to infinity.

The surface stress due to the contraction of surface bonds
does not sensitively affect the thermal conductivity. As a
result, the SW potential should be a sufficiently accurate
force field for surface thermal transfer problems.

ACKNOWLEDGMENTS

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United
States Department of Energy National Nuclear Security Ad-
ministration under Contract No. DEAC04-94AL85000. This
work was performed under a Laboratory Directed Research
and Development �LDRD� project.

*xzhou@sandia.gov
1 A. Shakouri, Proc. IEEE 94, 1613 �2006�.
2 A. Balandin and K. L. Wang, Phys. Rev. B 58, 1544 �1998�.
3 J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 �2001�.

4 K. E. Goodson and Y. S. Ju, Annu. Rev. Mater. Sci. 29, 261
�1999�.

5 A. Balandin, Phys. Low-Dimens. Struct. 1-2, 1 �2000�.
6 G. Mahan, B. Sales, and J. Sharp, Phys. Today 50�3�, 42 �1997�.

su
rf
ac
e
hy
dr
os
ta
tic
st
re
ss
(G
Pa
)

1

0

5004000

position along thickness (Å)

3

100 300200

modified SW potential
unmodified SW potential

2 nitrogen terminated surface

gallium terminated surface

T = 500 K

FIG. 13. Stress profile along the film thickness.

ZHOU, JONES, AND AUBRY PHYSICAL REVIEW B 81, 155321 �2010�

155321-12

http://dx.doi.org/10.1109/JPROC.2006.879787
http://dx.doi.org/10.1103/PhysRevB.58.1544
http://dx.doi.org/10.1063/1.1345515
http://dx.doi.org/10.1146/annurev.matsci.29.1.261
http://dx.doi.org/10.1146/annurev.matsci.29.1.261
http://dx.doi.org/10.1063/1.881752


7 Z. M. Zhang, Nano/Microscale Heat Transfer �McGraw-Hill,
New York, 2007�.

8 X. Lü, J. H. Gu, and J. H. Chu, Chin. Phys. 10, 223 �2001�.
9 X. Lü, W. S. Shen, and J. H. Chu, J. Appl. Phys. 91, 1542

�2002�.
10 S. G. Walkauskas, D. A. Broido, K. Kempa, and T. L. Reinecke,

J. Appl. Phys. 85, 2579 �1999�.
11 N. Mingo and D. A. Broido, Phys. Rev. Lett. 93, 246106 �2004�.
12 S. G. Volz and G. Chen, Appl. Phys. Lett. 75, 2056 �1999�.
13 T. Kawamura, Y. Kangawa, and K. Kakimoto, J. Cryst. Growth

284, 197 �2005�.
14 J. W. Che, T. Çağin, W. Q. Deng, and W. A. Goddard, J. Chem.

Phys. 113, 6888 �2000�.
15 J. W. Che, T. Çağin, and W. A. Goddard III, Nanotechnology 11,

65 �2000�.
16 J. Li, L. Porter, and S. Yip, J. Nucl. Mater. 255, 139 �1998�.
17 S. G. Volz and G. Chen, Phys. Rev. B 61, 2651 �2000�.
18 A. J. C. Ladd, B. Moran, and W. G. Hoover, Phys. Rev. B 34,

5058 �1986�.
19 R. Vogelsang, C. Hoheisel, and G. Ciccotti, J. Chem. Phys. 86,

6371 �1987�.
20 A. Maiti, G. D. Mahan, and S. T. Pantelides, Solid State Com-

mun. 102, 517 �1997�.
21 C. Oligschleger and J. C. Schon, Phys. Rev. B 59, 4125 �1999�.
22 J. Michalski, Phys. Rev. B 45, 7054 �1992�.
23 R. H. H. Poetzsch and H. Bottger, Phys. Rev. B 50, 15757

�1994�.
24 A. Baranyai, Phys. Rev. E 54, 6911 �1996�.
25 P. K. Schelling and S. R. Phillpot, J. Am. Ceram. Soc. 84, 2997

�2001�.
26 P. Jund and R. Jullien, Phys. Rev. B 59, 13707 �1999�.
27 P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B

65, 144306 �2002�.
28 P. K. Schelling, S. R. Phillpot, and P. Keblinski, J. Appl. Phys.

95, 6082 �2004�.
29 Y.-G. Yoon, R. Car, D. J. Srolovitz, and S. Scandolo, Phys. Rev.

B 70, 012302 �2004�.
30 S.-C. Wang, X.-G. Liang, X.-H. Xu, and T. Ohara, J. Appl. Phys.

105, 014316 �2009�.
31 X. W. Zhou, S. Aubry, R. E. Jones, A. Greenstein, and P. K.

Schelling, Phys. Rev. B 79, 115201 �2009�.
32 B. S. Simpkins, P. E. Pehrsson, M. L. Taheri, and R. M. Stroud,

J. Appl. Phys. 101, 094305 �2007�.
33 E. S. Landry, M. I. Hussein, and A. J. H. McGaughey, Phys.

Rev. B 77, 184302 �2008�.
34 P. Heino, J. Comput. Theor. Nanosci. 4, 896 �2007�.
35 I. Ponomareva, D. Srivastava, and M. Menon, Nano Lett. 7,

1155 �2007�.
36 X. W. Zhou, R. E. Jones, and S. Aubry, Phys. Rev. B 81, 073304

�2010�.
37 J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D.

Yang, and R. J. Saykally, Nat. Mater. 1, 106 �2002�.
38 Z. H. Zhong, F. Qian, D. L. Wang, and C. M. Lieber, Nano Lett.

3, 343 �2003�.
39 H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim,

T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 �2004�.
40 F. Qian, Y. Li, S. Gradecak, D. L. Wang, C. J. Barrelet, and C.

M. Lieber, Nano Lett. 4, 1975 �2004�.
41 Y. Huang, X. F. Duan, Y. Cui, and C. M. Lieber, Nano Lett. 2,

101 �2002�.
42 H. J. Choi, J. C. Johnson, R. R. He, S. K. Lee, F. Kim, P. Pauza-

uskie, J. Goldberger, R. J. Saykally, and P. D. Yang, J. Phys.
Chem. B 107, 8721 �2003�.

43 B. A. Danilchenko, T. Paszkiewicz, S. Wolski, A. Jezowski, and
T. Plackowski, Appl. Phys. Lett. 89, 061901 �2006�.

44 A. Béré and A. Serra, Phys. Rev. B 65, 205323 �2002�.
45 A. Béré and A. Serra, Philos. Mag. 86, 2159 �2006�.
46 J. Serrano, A. Rubio, E. Hernández, A. Muñoz, and A. Mujica,

Phys. Rev. B 62, 16612 �2000�.
47 M. Bertelli, P. Loptien, M. Wenderoth, A. Rizzi, R. G. Ulbrich,

M. C. Righi, A. Ferretti, L. Martin-Samos, C. M. Bertoni, and A.
Catellani, Phys. Rev. B 80, 115324 �2009�.

48 T. Ikeshoji and B. Hafskjold, Mol. Phys. 81, 251 �1994�.
49 E. B. Webb III, J. A. Zimmerman, and S. C. Seel, Math. Mech.

Solids 13, 221 �2008�.
50 G. A. Slack, J. Phys. Chem. Solids 34, 321 �1973�.
51 A. A. Marmalyuk, R. K. Akchurin, and V. A. Gorbylev, High

Temp. 36, 817 �1998�.
52 H. Balamane, T. Halicioglu, and W. A. Tiller, Phys. Rev. B 46,

2250 �1992�.
53 J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens.

Matter 15, 5649 �2003�.
54 J. Zimmerman, E. Webb III, J. Hoyt, R. Jones, P. Klein, and D.

Bammann, Modell. Simul. Mater. Sci. Eng. 12, S319 �2004�.

MOLECULAR DYNAMICS PREDICTION OF THERMAL… PHYSICAL REVIEW B 81, 155321 �2010�

155321-13

http://dx.doi.org/10.1088/1009-1963/10/3/310
http://dx.doi.org/10.1063/1.1427134
http://dx.doi.org/10.1063/1.1427134
http://dx.doi.org/10.1063/1.369576
http://dx.doi.org/10.1103/PhysRevLett.93.246106
http://dx.doi.org/10.1063/1.124914
http://dx.doi.org/10.1016/j.jcrysgro.2005.07.018
http://dx.doi.org/10.1016/j.jcrysgro.2005.07.018
http://dx.doi.org/10.1063/1.1310223
http://dx.doi.org/10.1063/1.1310223
http://dx.doi.org/10.1088/0957-4484/11/2/305
http://dx.doi.org/10.1088/0957-4484/11/2/305
http://dx.doi.org/10.1016/S0022-3115(98)00034-8
http://dx.doi.org/10.1103/PhysRevB.61.2651
http://dx.doi.org/10.1103/PhysRevB.34.5058
http://dx.doi.org/10.1103/PhysRevB.34.5058
http://dx.doi.org/10.1063/1.452424
http://dx.doi.org/10.1063/1.452424
http://dx.doi.org/10.1016/S0038-1098(97)00049-5
http://dx.doi.org/10.1016/S0038-1098(97)00049-5
http://dx.doi.org/10.1103/PhysRevB.59.4125
http://dx.doi.org/10.1103/PhysRevB.45.7054
http://dx.doi.org/10.1103/PhysRevB.50.15757
http://dx.doi.org/10.1103/PhysRevB.50.15757
http://dx.doi.org/10.1103/PhysRevE.54.6911
http://dx.doi.org/10.1111/j.1151-2916.2001.tb01127.x
http://dx.doi.org/10.1111/j.1151-2916.2001.tb01127.x
http://dx.doi.org/10.1103/PhysRevB.59.13707
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1103/PhysRevB.65.144306
http://dx.doi.org/10.1063/1.1702100
http://dx.doi.org/10.1063/1.1702100
http://dx.doi.org/10.1103/PhysRevB.70.012302
http://dx.doi.org/10.1103/PhysRevB.70.012302
http://dx.doi.org/10.1063/1.3063692
http://dx.doi.org/10.1063/1.3063692
http://dx.doi.org/10.1103/PhysRevB.79.115201
http://dx.doi.org/10.1063/1.2728782
http://dx.doi.org/10.1103/PhysRevB.77.184302
http://dx.doi.org/10.1103/PhysRevB.77.184302
http://dx.doi.org/10.1021/nl062823d
http://dx.doi.org/10.1021/nl062823d
http://dx.doi.org/10.1103/PhysRevB.81.073304
http://dx.doi.org/10.1103/PhysRevB.81.073304
http://dx.doi.org/10.1038/nmat728
http://dx.doi.org/10.1021/nl034003w
http://dx.doi.org/10.1021/nl034003w
http://dx.doi.org/10.1021/nl049615a
http://dx.doi.org/10.1021/nl0487774
http://dx.doi.org/10.1021/nl015667d
http://dx.doi.org/10.1021/nl015667d
http://dx.doi.org/10.1021/jp034734k
http://dx.doi.org/10.1021/jp034734k
http://dx.doi.org/10.1063/1.2335373
http://dx.doi.org/10.1103/PhysRevB.65.205323
http://dx.doi.org/10.1080/14786430600640486
http://dx.doi.org/10.1103/PhysRevB.62.16612
http://dx.doi.org/10.1103/PhysRevB.80.115324
http://dx.doi.org/10.1080/00268979400100171
http://dx.doi.org/10.1177/1081286507086899
http://dx.doi.org/10.1177/1081286507086899
http://dx.doi.org/10.1016/0022-3697(73)90092-9
http://dx.doi.org/10.1103/PhysRevB.46.2250
http://dx.doi.org/10.1103/PhysRevB.46.2250
http://dx.doi.org/10.1088/0953-8984/15/32/324
http://dx.doi.org/10.1088/0953-8984/15/32/324
http://dx.doi.org/10.1088/0965-0393/12/4/S03

